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Overview and results  

Brain networks are complex designs comprising more than one hundred billion neurons 

that work together to produce the associated potential for action, not acting in isolated 

fields. Decoding the connectome relationship between nerve cells during mental tasks and 

representing this relationship in a high temporal-spatial resolution is an attractive problem 

for neuro-connectivity to go beyond these networks. In this sense, the brain connectivity 

known as Functional Connectivity (FC), Effective Connectivity (EC), and Structural 

Connectivity are represented in three distinctive concepts (SC). The FC is also known as 

segregation, which reveals functional patterns between various regions of the brain, while 

successful integration reveals the impact of causality on a neural region, whether affected 

by another region's direct or indirect behavior.  

Connectivity research emerged from MRI technology, first aiming to construct and 

discover structural pathways (connectome) in the human brain. The emergence of high 

spatial resolution functional (1-3 mm3) MRI (fMRI) made it possible to conduct functional 

connectivity studies. These investigations led to the identification of several fundamental 

resting-state and task-based brain networks [1]–[3]. Due to technological limitations, 

however, fMRI functional connectivity analysis is not suitable for the examination of 

millisecond range changes typically found, for instance, during cognitive task execution. 

An alternative to fMRI in connectivity studies is EEG technology that provides superior 
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temporal resolution and measures signals generated directly by neurons as opposed to 

blood oxygenation changes, such as BOLD fMRI. 

EEG functional connectivity can be sensor or source based. If statistical dependence is 

calculated between the electrode signals, we refer to sensor-level (a.k.a sensor-space) 

connectivity. If the electrode signals are projected to the cortex by solving the inverse 

problem that identifies the original sources of bioelectric activities and calculated the 

association among these cortical regions, we refer to source-level (or source-space) 

connectivity. Source-level connectivity has the potential to achieve higher spatial 

resolution (the cortex can be partitioned to thousands of potential source areas) but requires 

accurate 3D anatomical models and solving the ill-posed inverse problem. For these 

reasons, sensor-level connectivity would be preferable as an experimental method. 

The general process of generating a functional connectivity network from EEG 

measurements is the following. The cleaned, pre-processed signal is input the first stage of 

the process that establishes associations between electrodes or cortical sources based on a 

selected association measure described below. The output of this stage is a square 

association matrix. Each entry of the matrix represents the strength of the connectivity 

between two electrodes or sources. This matrix is then used as an adjacency matrix, from 

which various features can be extracted. To reduce the number of edges in the network 

graph, normally the association matrix is thresholded and only the top few percent of the 

edges are kept. The structure of the final connectivity graph can be analysed by the 

network features and input to statistical tests.  

Functional EEG connectivity has the potential to provide more information than fMRI, due 

to its higher temporal resolution. Oscillations in the brain regions provide a certain 

coordination mechanism emerging as synchronized rhythms. These oscillations may 

transfer information from a local network or region to another region. Examining the flow 

of information between regions may help to reveal the connectivity relation between the 

neural assemblies either at rest or during task execution. Connectivity information between 

the distant brain regions may explain how the neural networks are altered e.g. in stroke or 

neurodegenerative diseases [4]. It can provide new insights about the large-scale neuronal 

communication in the brain and may help to understand the origins or track the progress of 

recovery of stroke or monitor the status of brain diseases such as Alzheimer’s disease [5], 

and predict outcome of treatment to many other deficits related to the brain. In this 

proposal, I provide deep insight about how EEG-based functional connectivity can be used 
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to describe brain plasticity in stroke, which is the brain’s natural ability for re-wiring that is 

essential for successful recovery from stroke.  

The most important issue in time-frequency analysis is the principle of uncertainty, which 

stipulates that one cannot localize a signal with absolute precision both in time and 

frequency. Long windows are needed for lower frequencies that provide good frequency 

but reduced temporal resolution, while short windows used for higher frequencies result in 

better time but lower frequency resolution. Over the past 30 years research to non-

stationary signals increasingly has grown resulting in a body of work called "time-

frequency" (TF) methods. This included linear TF methods such as the Short Time Fourier 

Transform (STFT), Wavelet Transform (WT) that involve phase and magnitudes 

contributions, and non-linear methods that lead to real-valued transforms. STFT, the 

extension of FT, was modified to show nonstationary characteristics of the signal in the 

time-frequency domain. It consists of the successive FFT of the overlapped windowed 

signal, where each frequency distribution being correlated with each window's central 

time. The main drawback of the method that it has a smeared peak around the peak of the 

main frequency with decaying side lobes on the selected window. However, side lobes 

attenuation is associated with increasing of the window [6]. The spectral smearing can be 

reduced by increasing the length of the time window, but this also reduces the time 

localization by imposing increased stationarity. Thus, high time localization comes at the 

expense of the spectral smearing.  

I proposed the Using of Hilbert transform as a means to compute instantaneous frequency, 

promised better results [7]. As an improvement, the Hilbert-Huang transform based on 

Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis have been 

recommended. While used successfully in EEG studies  [14] EMD has been criticized for 

being sensitive for noise and prone to mode mixing. Improvements, such as Ensemble 

Empirical Mode Decomposition [10] reduced noise sensitivity and mode mixing, while the 

CEEMDAN method [11], [12] further reduced spurious modes and component noise, and 

provided completeness, i.e. the recoverability of signals from its immediate mode 

functions. 

I presented solutions for problems related to cleaning the EEG artefacts and  increasing the 

temporal resolution of functional connectivity [7] and went through a collection of used 

tools that have been developed to give possible solutions then showed how my proposed 

method can uncover fast-changing connectivity patterns in a finger-tapping task. 
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The work of research included: 

1. The research started by recording the EEG data and filtering the unwanted signals 

using our smart cleaning algorithms for removing the EOG-ECG artifacts from 

EEG [13]–[15]. 

2. Then the research extended  the use of the proposed method for identifying brain 

bio markers [16]. 

3. Tracking the re-modelling and brain plasticity after stroke and showing the hidden 

information that cannot be shown in the neuroimaging method as MRI. 

4. Identifying reliable biomarkers that characterize progress of Stroke recovery and 

predict outcome.  

5. Exploring the use of high-resolution EEG technology, complementing the use of 

clinical stroke scales, as an aid to track and measure patient recovery progress. 

6. Resting state EEG analysis was carried out easily without the need to move the 

patients, can be replicated on a regular basis for accurate tracking of progress. 

7. The finger tapping experiment have been used to monitor connectivity changes in 

the motor region of the stroke patient. 

8. Functional brain connectivity network identification helped to speed up the 

recovery and improve the rehabilitation outcome.  

9. Introducing a high time-frequency resolution method to track instantaneous high 

dynamical changes of brain connectivity. 

Conclusion: 

My research developed a novel approach for resolving issues involving the measurement 

of EEG brain signals, artefact removal, and brain connectivity. Because our brain 

connectivity networks evolve at a millisecond rate, conventional time-frequency methods 

are unable to detect rapid changes in neural connectivity. Therefore, a high-time-frequency 

resolution approach was used to generate a finer time-frequency resolution on the non-

stationary EEG signal and to track the fast-dynamic changes in brain connectivity. The 

implemented method will aid in the identification of accurate biomarkers that demonstrate 

brain rewiring and plasticity, as well as describe and predict stroke recovery progress and 

outcomes.  
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